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An artificial intelligence-based framework for BLEACH&STAIN mfIHC facilitates automated prognosis marker assessment 
in breast cancer
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Conclusions

To enable automated prognosis marker
detection (i.e. TROP2, GATA3, androgen
receptor [AR], progesterone receptor [PR],
estrogen receptor [ER], HER2, PD-L1, Ki-
67, TOP2A), we have developed and
validated a framework for automated
breast cancer characterization, which
comprises three different artificial
intelligence analysis steps and an
algorithm for cell-distance analysis of 11+1
marker BLEACH&STAIN multiplex
fluorescence immunohistochemistry
staining in 1780 breast cancers in a TMA-
format.

The assessment of prognostic markers in
routine clinical practice of breast cancer is
currently performed using multi gene RNA
panels. However, the unknown proportion
of normal breast tissue in relation to
malignant breast tissue can reduce the
predictive value of such tests. Multiplex
fluorescence immunohistochemistry holds
the potential for a better assessment of
tumors because tumor cells can be
separately analyzed.

Ø A deep learning-based framework for automated breast cancer identification using BLEACH&STAIN multiplex fluorescence IHC
facilitates automated prognosis marker quantification in breast cancer.

Ø Automated tumor cell identification improves prognostic performance of prognosis marker quantification.
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Marker distribution and MCL cluster

Representative picture of a TMA core using 11+1 BLEACH&STAIN
multiplex fluorescence immunohistochemistry. The staining was
conducted in four sequential staining and imaging rounds of three
biomarkers at a time (two biomarkers within the last round) and a
bleaching step between every cycle. Finally, the four sequential digital
images were aligned and thus merged into a single 11+1 mfIHC image.

PD-L1 panCK Ki-67

The analysis framework was validated by the concordance
with well-characterized biological findings, such as the
identification of 11% HER2+, 74% PR+/ER+, and 15% triple
negative cases in the study cohort.
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Image analysis was performed using a previously trained deep learning-based
framework (U-Net) for cell detection followed by single cell intensity measurement of
the fluorophores. Cell-to-cell distance analysis was then used to calculate the distance
from epithelial cells to Myosin+ basal cells. Epithelial cells close to Myosin+ basal cells
(< 25µm) were classified as benign epithelial cells and excluded from the study. This
approach was combined with a deep-learning based framework (DeepLab3+) for
automated breast cancer detection resulting in an improved prognostic performance.

Clinical 
parameter n p-value p-value p-value p-value p-value p-value p-value p-value p-value

pT <0.001 <0.001 <0.001 <0.001 0.26 0.4 0.3 0.003 <0.001
pT1 812 82.8 (±25.2) 86.6 (±23.4) 71.6 (±29.6) 62.7 (±32.3) 50.0 (±38.7) 7.9 (±26.5) 18.8 (±24.1) 7.1 (±9.4) 1.2 (±2.7)
pT2 740 77.1 (±29.9) 80.3 (±30.0) 63.9 (±33.6) 50.1 (±35.4) 51.5 (±40.6) 6.6 (±22.6) 17 (±21.8) 8.8 (±10.5) 1.8 (±3)
pT3-4 172 73.6 (±29.9) 73.8 (±33.5) 56.5 (±33.4) 42.0 (±36.1) 46.0 (±41.4) 5.7 (±0.19.7) 17.2 (±35.2) 7.9 (±10.3) 2.1 (±3.7)

pN 0.021 <0.001 <0.001 <0.001 0.036 1.0 0.001 0.088 <0.001
pN- 787 81.4 (±27.1) 85.1 (±25.6) 71.7 (±30.0) 60.4 (±34.2) 52.1 (±39.8) 7.6 (±23.9) 18.3 (±26.4) 7.0 (±9.4) 1.2 (±2.2)
pN+ 614 78.0 (±28.5) 79.3 (±29.5) 63.5 (±32.3) 48.8 (±34.5) 47.6 (±39.4) 7.6 (±26.2) 14.2 (±19.0) 7.9 (±9.7) 1.6 (±3.2)

pM 0.043 <0.001 <0.001 <0.001 <0.001 0.09 0.4 0.002 <0.001
pM- 214 78.6 (±28.6) 87.5 (±21.5) 75.6 (±26.5) 67.8 (±30.9) 56.8 (±38.5) 10.3 (±24.8) 10.0 (±19.2) 6.1 (±8.0) 0.9 (±1.8)
pM+ 113 71.4 (±33.3) 71.1 (±34.1) 50.7 (±36.0) 32.1 (±33.7) 38.7 (±38.6) 5.9 (±16.9) 11.6 (±11.9) 9.6 (±12.1) 2.1 (±3.2)

Grade <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001
1 193 88.4 (±19.8) 93.1 (±13.9) 78.1 (±22.9) 75.5 (±23.7) 49.4 (±36.3) 3.4 (±13.3) 18.0 (±18.7) 4.7 (±8.7) 0.4 (±1.0)
2 963 80.7 (±26.7) 88.4 (±21.4) 70.8 (±29.0) 62.6 (±31.2) 57.2 (±38.1) 5.1 (±18.2) 16.1 (±20.4) 5.6 (±7.0) 1.0 (±2.0)
3 612 73.9 (±31.5) 69.8 (±35.0) 55.1 (±36.8)  36.2 (±35.2) 38.7 (±41.0) 11.3 (±32.7) 20.4 (±30.7) 12.6 (±12.7) 2.7 (±4.1)
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